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SUMMARY

A new method of combining dynamical and statistical ensembles for the purpose of improving ensemble
reliability for underdispersive ensembles is introduced. The method involves adding independent sets ofN random
four-dimensional ‘dressing’ perturbations to each of the K members of a dynamical ensemble forecast to obtain
an N ×K dressed ensemble. The new method mathematically constrains the stochastic process used to generate
the statistical dressing perturbations so that it removes seasonally averaged errors in the second moment measures
for originally underdispersive ensembles. A random-number generator experiment and an experiment with the
ensemble transform Kalman filter (ETKF) ensemble generation scheme show that the previously proposed ‘best-
member’ dressing method fails to reliably predict the second moment of the distribution of forecast errors,
whereas the new dressing method reliably predicts this second moment. After being dressed with the second
moment constraint method, the ETKF ensemble is more skilful than the undressed ensemble. The ETKF ensemble
postprocessed with the new dressing method is applied for probabilistic forecasts of cooling degree-days (CDD)
for Boston. It is shown that the new kernel’s ability to account for temporally correlated forecast errors results in
ensemble forecasts of CDDs with reliable spread, whereas the best-member method leads to an underdispersive
ensemble of CDD forecasts.
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1. INTRODUCTION

During the last decade, ensemble forecasting has become an important part
of numerical weather prediction (NWP). It has been operationally implemented for
medium-range NWP (e.g. Toth and Kalnay 1993, 1997; Houtekamer et al. 1996;
Molteni et al. 1996) and is being incorporated into short-range NWP (e.g. Du et al.
1997; Hamill and Colucci 1997, 1998; Stensrud et al. 1999; Hou et al. 2001; Grimit and
Mass 2002; Stensrud and Yussouf 2003). Compared to a single deterministic forecast
with high resolution, ensemble mean forecasts with relatively low resolution for each
ensemble member can produce smaller root-mean-square errors. Moreover, ensemble
forecasts can provide flow-dependent estimates of forecast errors, depicted by ensemble
spread or expressed in forecast probabilities (e.g. Whitaker and Loughe 1998; Toth et al.
2001). Studies by Richardson (2000), Zhu et al. (2002), Palmer (2002) and Roulston
et al. (2003) amongst others, have demonstrated that the economic value of ensemble
forecasts is greater than that of a single deterministic forecast to a wide range of weather
forecast users.

Managers of weather sensitive activities can benefit from probabilistic forecasts
that reliably represent the probability distribution of the verifications given the ensemble
forecast (e.g. Palmer 2002). However, because of the sub-optimal initial perturbation-
generation techniques and the lack of consideration of model errors, rank histogram
diagnostics show (e.g. Hamill and Colucci 1997, 1998) that outputs from raw ensem-
bles may be biased and under-dispersive, which limits the predictive power of the
ensemble. Hence, developing postprocessing methods to calibrate the outputs of ensem-
ble forecasting systems has also been of interest. Methods include: reliability diagram
statistics (e.g. Zhu et al. 1996; Krzysztofowicz and Sigrest 1999; Toth et al. 2001; Atger
2003); verification rank histogram statistics (Hamill and Colucci 1997, 1998; Eckel and
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Walters 1998); spread–skill relationship statistics (Atger 1999); smoothing with fitted
probability distributions (Wilks 2002); Bayesian model averaging (Kass and Raftery
1995; Raftery et al. 2003); logistic regression techniques (Hamill et al. 2004); and the
‘best-member dressing’ method (Roulston and Smith 2003, hereafter RS03).

In this paper, we focus on developing a statistical method to reliably augment the
spread of underdispersive ensembles, which is one of the problems for most current
operational ensemble systems. The new method introduced is intended to improve upon
RS03’s dressing method, where statistical perturbations are added to each member of
the dynamic ensemble in the postprocessing. The advantages of the dressing method
are: (a) ensemble size can easily be increased as one can easily add many dressing
perturbations to each member of the dynamic ensemble; (b) the dressing method can
reflect some residual errors that the dynamic ensemble has not yet accounted for; (c) the
dressing procedure maintains all information of the flow-dependent forecast uncertainty
information in the dynamic ensemble; (d) the dressing method can easily be applied to
calibrate ensemble outputs of multi-dimensional variables; and (e) the dressed-ensemble
members can conveniently be applied to different types of user application functions.

In the best-member dressing method proposed by RS03, the best member out of
each historical ensemble forecast is first identified, and the difference between the
best member and the verification, i.e. the best-member error, is stored. The archive
of the best-member errors is built from all historical ensemble forecasts available.
When dressing, the statistical perturbations are drawn from the archived historical best-
member errors. The best-member dressing perturbations are straightforward to con-
struct. However, we notice that this approach does not guarantee the dressed ensemble
to be ‘reliable’ (Wilks 1995). Specifically, a reliable ensemble should appear to be drawn
from the same distribution as the verifying observations given the ensemble. The best-
member dressing approach, however, does not mathematically constrain the distribution
of the augmented (or ‘dressed’) ensemble to satisfy this condition under any measure.
The purpose of this paper is to reveal the limitations of the best-member method, and
to introduce a new dressing method to make the originally underdispersive ensemble
become reliable after dressing under the second moment measure (for a one-dimensional
verification, the second moment refers to variance; for a multi-dimensional verification,
the second moment refers to covariance).

In sections 2 and 4 we explicitly demonstrate how the best-member dressing can
result in distributions of the augmented ensemble being unreliable under second moment
measures. In particular, we show that the best-member dressed ensemble may still be
underdispersive or even become overdispersive, depending on, for example, the size of
the undressed ensemble, how underdispersive the undressed ensemble is (section 2) and
the subjective rules used to define the best member in practice (section 4). The prototype
test in section 2 is based around ensembles generated with a random-number generator
in which the difference between the distribution of undressed-ensemble members and
the distribution of verifying observations can be controlled. The test in section 4 is based
around an ensemble generated using the ensemble transform Kalman filter (ETKF;
Bishop et al. 2001; Wang and Bishop 2003; Wang et al. 2004).

In section 3, we give the theoretical basis of the new second moment constrained
dressing technique, and illustrate it using the ensemble generated with a random-
number generator. In section 4, the performance of the new dressing technique is
compared against the best-member dressing technique for improving the reliability of
the 500 hPa zonal wind, U500, ensemble forecasts from the ETKF ensemble made with
the National Center for Atmospheric Research (NCAR) Community Climate Model
Version 3 (CCM3, Jeffery et al. 1996). In section 5, both dressing techniques are further



IMPROVEMENT OF ENSEMBLE RELIABILITY 967

tested by applying them to forecasts of 3-day accumulated cooling degree-days (CDDs)
at Boston. The ability of both dressing methods to provide estimates of the covariance
of multi-variables is demonstrated in this application. Concluding remarks follow in
section 6.

2. LIMITATIONS OF BEST-MEMBER DRESSING: THE RANDOM-NUMBER GENERATOR
EXPERIMENT

In this section, we use a simple random-number generator experiment (for other
examples of random-number generator experiments see e.g. Atger (2004)) to identify
the limitations of the best-member dressing technique. Let us assume that for each
case, a verifying observation y is drawn from a normal distribution with zero mean
and standard deviation σt ; in other words, assume that y ∼N(0, σt ). To simulate daily
variation of σ 2

t , we let σ 2
t be drawn from a chi-square distribution with a certain degree

of freedom, df, represented by Chi(df). In the result shown below, df = 3. As a proxy
for an underdispersive K-member ensemble, let us draw K random numbers xk, k =
1, 2, . . . , K , where each xk represents a random draw from a normal distribution with
a correct mean but an incorrect standard deviation σe, in other words we assume that
xk ∼N(0, σe). To represent the underdispersion, we let σ 2

e = aσ 2
t where 0< a < 1.

To further reflect that the underdispersion varies daily and the average underdispersion
is different for different ensemble systems, we let a be a random number drawn from a
uniform distribution from nine ranges, (0, 0.2), (0.1, 0.3), (0.2, 0.4), . . . , (0.8, 1.0).

Below we describe 12 steps used to simulate the training, forecasting and verifying
procedures for the best-member dressing for a givenK and a given range of a. To build
the training statistics for the best-member dressing perturbations we proceed as follows.

• Step 1: Draw a sample of σ 2
t from Chi(3) and then draw a verification from

N(0, σt ).
• Step 2: Draw a sample of a from a uniform distribution corresponding to one of

the given ranges and then draw a K-member undressed ensemble from N(0, σe),
where σ 2

e = a · σ 2
t .

• Step 3: Find the ensemble member that is closest to the verification and find its
distance from the verification.

• Step 4: Store this ‘best-member error’ in an archive.
• Step 5: Repeat steps 1–4 M times to obtain an archive of the M best-member

errors for M cases and/or compute the sample variance σ 2
b of the archive of the

best-member errors.

Note that since we require that the undressed ensemble is drawn from a distribution
with the same mean as the verifying observations, in this simplified case, the mean of the
M archived best-member errors is zero when M approaches infinity. Having obtained
this archive of errors, we then simulate the forecasting and dressing processes for a given
K and a given range of a as follows.

• Step 6: repeat above steps 1 and 2 to generate a sample of verification and a
K-member undressed ensemble.

• Step 7: Generate K independent N -member statistical ensembles of best-member
errors either by randomly sampling from the archive or by drawingKindependent
sets of N random numbers εkn, n= 1, 2, . . . , N; k = 1, 2, . . . , K where εkn ∼
N(0, σb).
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• Step 8: The statistical ensembles are then combined with the dynamical
ensemble to create an N ×K member dressed ensemble ψkn, k = 1, 2, . . . , K;
n= 1, 2, . . . N using:

ψkn = xk + εkn, k = 1, 2, . . . , K; n= 1, 2, . . . , N, (1)

for each case.
• Step 9: Repeat steps 6–8 M ′ times to collectM ′ cases.

To verify the reliability of the dressed ensemble under the second moment measure,
first note that if the verification were drawn from the same probability distribution as the
ensemble, then the average square distance between any two randomly selected dressed-
ensemble members ought to be the same as the average square distance between ran-
domly selected ensemble members and the verification. Consequently, we test whether
the best-member dressing results in a reliable ensemble as follows.

• Step 10: Compute the averaged square distance between each distinct pair
of dressed-ensemble members. Note that since the total number of dressing
perturbations is different from the number of undressed-ensemble members,
from Eq. (1) this quantity is calculated by Term1 = 〈〈(xmk − xmi)

2〉i �=k〉m +
〈〈(εmkn − εmil)

2〉kn �=il〉m, where subscriptm denotes themth case of theM ′ cases,
〈 〉i �=k is the average over all combinations of distinct undressed-ensemble mem-
bers for the mth case, 〈 〉kn �=il is the average over all combinations of distinct
dressing perturbations for the mth case, and 〈 〉m is the average over all M ′ cases.

• Step 11: Compute the mean square distance between the verifying observations
and each ensemble member by Term2 = 〈〈(ψmkn − ym)

2〉kn〉m where 〈 〉kn is the
average over all dressed-ensemble members for the mth case.

• Step 12: Compare the relative difference (denoted by DIFF) of the quantities in
steps 10 and 11, i.e. calculate DIFF = (Term1 − Term2)/Term2.

Steps 1 to 12 are repeated for different choices of K and range a.
Figure 1(a) shows DIFF as a function of K and the average of a = σ 2

e /σ
2
t for each

range, i.e. a = 0.1, . . . , 0.9. Here, M =M ′ = 15 000, and N = 150. Negative (posi-
tive) DIFF indicates that the dressed ensemble is under-dispersive (over-dispersive).
Figure 1(a) shows that for K = 1, DIFF is equal to zero for all a. When K is larger
than 1, for any given a, there is only one value of K that renders the best-member
dressing method reliable. The best-member dressed ensemble is either overdispersive or
underdispersive beyond that regime, depending on the undressed-ensemble size K and
how under-dispersive (measured in a) the undressed ensemble is. A contour plot (not
shown) of the ratio of averaged dressed-ensemble variance over averaged true variance
has a similar pattern to Fig. 1(a), that is, for a given a, the ratio varies depending on K .
For example, for a = 0.7, although the dressed ensemble becomes less underdispersive
as the ratio is greater than 0.7 for all K considered, the ratio is greater than 1 for K < 5,
which means the dressed ensemble becomes overdispersive and the ratio is less than 1
for K > 5, which means the dressed ensemble is still underdispersive. Also note, if we
draw perturbations directly from the archive rather than from a prescribed distribution,
the best-member method has the limitation that the number of dressing perturbations
is constrained by the size of the archive, M , because one needs to draw independent
perturbations for different ensemble member. In the next section we introduce a new
dressing kernel that does not suffer from the above limitations.
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Figure 1. Random-number-generator experiment results in testing the reliability of the spread of the ensemble
dressed by: (a) the best-member method, and (b) the new dressing kernel. Thin solid contours indicate overdis-
persive ensemble; dashed contours indicate underdispersive ensemble; thick solid contours mean the spread is

reliable. See text for details.

3. DRESSING WITH THE SECOND MOMENT CONSTRAINT

We seek a mathematical constraint on a dressing kernel that will render the ensem-
ble reliable on the seasonally averaged second moment measure. The method is applica-
ble for underdispersive ensembles, which is one of the problems in current operational
ensembles. For each case of forecasts over a season, let y contain a list of verifications
that we wish to predict, and let x contain the corresponding list of forecast variables
from one member of the underdispersive dynamic ensemble. To begin, we remove the
seasonally averaged bias of each ensemble member and then assume that each ensemble
member is drawn from a stochastic process:

x = x + x′, (2)

where 〈x〉 = x gives the mean of the underlying distribution (which may be different to
the sample mean one obtains when one takes the mean of a K-member ensemble) and
〈x′〉 = 0. The covariance of Eq. (2) is denoted as:

�2 = 〈x′x′T〉, (3)

where T denotes the transpose. To dress the ensemble, statistical perturbations ε are
added to each dynamic ensemble member. Let ψ list the corresponding dressed fore-
casts. Written in a similar format to Eq. (2), the dressed-ensemble members are drawn
from the stochastic process:

ψ = x + ε = x + x′ + ε, (4)

where 〈ε〉 = 0, 〈εx′〉 = 0. Note that the mean of the dressed ensemble is still x. Also
note that we have assumed the seasonally averaged bias of x has been removed. The
basic idea of the new dressing kernel is to choose the covariance of ε, that is 〈εεT〉, to
make ψ indistinguishable from the verification, y, under second moment measurement



970 X. WANG and C. H. BISHOP

on a seasonally averaged basis. Mathematically, we require:

〈〈(ψli − ψlj )(ψli − ψlj )
T〉i �=j 〉l = 〈〈(ψli − yl)(ψli − yl)

T〉i〉l , (5)

where subscript l denotes the lth case over a season, and subscripts i and j denote any
two different dressed-ensemble members; 〈·〉l represents the average of all cases over
a season, 〈·〉i �=j denotes averaging over all combinations of any two different dressed-
ensemble members for the lth case, and 〈·〉i is the averaging over all choices of i for a
particular case. Substituting Eqs. (3) and (4) into Eq. (5), one can show (see appendix)
that Eq. (5) is satisfied provided that:

〈εεT〉 = 〈(xl − yl)(xl − yl)
T〉l − 〈�2

l 〉l, (6)

where xl and �2
l are the mean and covariance of the underlying distribution from which

the undressed ensemble is drawn for the lth case. Note that the covariance of the dressing
perturbations 〈εεT〉 is the same for all ensemble members for all cases; therefore,
we put no subscript on this term. Also note that for a one-dimensional verification,
Eq. (6) simply states that 〈εεT〉 should be equal to the difference between the seasonally
averaged variance of the error of the underlying ensemble mean and the seasonally
averaged ensemble variance.

To understand the new dressing kernel 〈εεT〉 given by Eq. (6), we use a two-
dimensional figure (Fig. 2) to illustrate the idea. Assume the number of variables that
we are interested in forecasting is two, that is, x, y and ψ contain two elements each.
Each black dot in Fig. 2(a) represents the difference between one ensemble forecast
member and the corresponding underlying ensemble mean. Since there are L forecasts
each ofK members made each season, the number of dots present in Fig. 2(a) is equal to
K × L, and the covariance of these points corresponds to the 〈�2

l 〉l term in Eq. (6). The
one-sigma ellipse associated with this covariance is shown by the black line in Fig. 2(a).
In Fig. 2(b), each of the L grey dots gives the difference between a verification and a
corresponding underlying ensemble mean. The covariance of these dots gives the first
right-hand term in Eq. (6). Since the seasonally averaged bias of undressed ensembles
has been removed, the grey dots in Fig. 2(b) centre at (0, 0). Note that the one-sigma
ellipse for the grey dots is larger than that for the black dots, indicating that the undressed
ensemble in Fig. 2(a) is under-dispersive. In Fig. 2(c) we illustrate what Fig. 2(a) will
look like after we dress one ensemble member with a number of perturbations. After we
dress all members, the corresponding plot is shown in Fig. 2(d) where the scattered stars
are the differences of the dressed-ensemble members from the corresponding underlying
ensemble mean. The one-sigma ellipse associated with the stars is also shown by the
black line in Fig. 2(d). The idea of the new dressing kernel is to constrain the covariance
of the dressing perturbations, i.e. the one-sigma ellipse in Fig. 2(c), by Eq. (6), so
that the one-sigma ellipse associated with the dressed-ensemble perturbations (stars) in
Fig. 2(d) is identical to the one-sigma ellipse associated with the errors of the underlying
ensemble mean (grey dots) in Fig. 2(b). Note that in Fig. 2(d) 〈(�D)2l 〉l denotes the
seasonally averaged covariance of the dressed-ensemble perturbations.

To obtain the underlying ensemble mean and covariance in Eq. (6), one would
need an infinitely large ensemble. For a finite undressed-ensemble size, the underlying
ensemble mean and covariance xl and �2

l in Eq. (6) are estimated using a sample

ensemble mean xsl and a sample ensemble covariance �s
2

l , namely:

xsl = 1

K

m=K∑
m=1

xlm, (7)
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Figure 2. Illustration showing the idea of the new dressing kernel in two-dimensional space. (a) Black dots
each represent the difference between one ensemble forecast member and the corresponding underlying ensemble
mean; (b) grey dots each give the difference between a verification and a corresponding underlying ensemble
mean; (c) shows (a) after one ensemble member is dressed with a number of perturbations; (d) scattered stars are
the differences between the dressed-ensemble members from the underlying ensemble mean. The black lines are
1-sigma ellipses associated with the covariance of the corresponding points in each panel. See section 3 for a more

detailed explanation.

and

�s
2

l = 1

(K − 1)

m=K∑
m=1

(xlm − xsl )(xlm − xsl )
T. (8)

Recall that seasonally averaged biases of the sample ensemble means are assumed
to be removed from Eqs. (7) and (8). When sample covariances and means are used to
estimate the terms in Eq. (6), the variation of the sample mean about the underlying
ensemble mean must be accounted for. In the appendix, it is shown that accounting for
this variation leads to the formula:

〈εεT〉 = 〈(xsl − yl)(x
s
l − yl)

T〉l −
(

1 + 1

K

)
〈�s2

l 〉l, for K � 2. (9a)

In the situation wherein there is only one control forecast xc
l for the lth case, that is

K = 1, the new dressing kernel is:

〈εεT〉 = 〈(xc
l − yl)(x

c
l − yl)

T〉l, for K = 1. (9b)

To test the new dressing kernel, we also adopt the one-dimensional random-number
generator experiment in section 2 with the one-dimensional new dressing kernel given
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by Eqs. (9a) and (9b). The result is shown in Fig. 1(b), which demonstrates that the new
dressing kernel of Eqs. (9a) and (9b) can provide a reliable ensemble for all K and a
under the second moment measure given by steps 10–12 in section 2.

To generate dressing perturbations for multi-dimensional variables, we use a multi-
dimensional random-number generator. First, note that the covariance matrix given by
Eq. (9), denoted as Q hereafter, is real and symmetric but not necessarily positive
definite. The new dressing procedure applies dressing perturbations only in phase-space
directions that show underdispersion. We first perform an eigenvalue decomposition
on Q:

Q = 〈εεT〉 = E�ET, (10)

where the columns of E contain the eigenvectors and the diagonal matrix � contains
the corresponding eigenvalues. Positive eigenvalues indicate that on the directions of
the corresponding eigenvectors the ensemble is underdispersive and thus dressing is
necessary. In contrast, negative eigenvalues indicate that the undressed ensemble is
overdispersive in the directions of the corresponding eigenvectors. Since dressing the
ensemble in the overdispersive directions would make it even more overdispersive in
these directions, we only dress in the directions corresponding to positive eigenvalues.
Similarly, directions of zero eigenvalues need not be dressed. Note that the best-member
method does not have constraints not to dress the raw ensemble in these directions.
Based on this argument, we define the new dressing perturbation generator as:

ε = x1e+
1 + x2e+

2 + · · · + xI e+
I , (11)

where e+
i , i = 1, 2, . . . , I , are all eigenvectors corresponding to the positive eigen-

values. The coefficients xi , i = 1, 2, . . . , I , are univariate random variables which are
parametrized as normal distributions with mean equal to zero and variance equal to the
ith positive eigenvalue of Q, denoted as ω+

i . Mathematically:

xi ∼ N(0,
√
ω+
i ). (12)

Note that Eqs. (11) and (12) enable the generation of multi-dimensional dressing
perturbations for the multivariate verification of interest at small cost. Also note that
the new dressing kernel is designed for underdispersive ensemble. It is not only able to
make underdispersive ensembles, after dressing, have reliable spread for each individual
variable, but can also produce a reliable estimate of the error covariance between
the variables of interest if all phase-space directions of the undressed ensemble show
underdispersion. Depending on the variables of interest, the new dressing kernel can
be constructed to consider both temporal and spatial correlations of the forecast errors.
Thus, the method allows four-dimensional dressing. The new dressing perturbations can
also be drawn from an archive instead of a prescribed distribution. The method by which
this can be done is discussed in section 6.

Note that whenK is greater than unity but rather limited, the new kernel defined by
Eq. (9a) makes the dressed ensemble satisfy the condition that the seasonally averaged
covariance of the differences between ensemble members and the verifications is equal
to the seasonally averaged covariance of the differences between ensemble members.
This is a useful second moment property. Another useful but slightly different second
moment property, is to make the seasonally averaged covariance of the differences
of the ensemble from the sample ensemble mean equal to the seasonally averaged
error covariance of the sample ensemble mean. This latter property can be obtained
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by replacing Eq. (9a) with:

〈εεT〉 = 〈(xsl − yl)(x
s
l − yl)

T〉l −
(

1 − 1

K

)
〈�s2

l 〉l, for K � 2. (13)

In other words, from Eqs. (9a) and (13), these two second-moment properties cannot
be satisfied simultaneously for smallish K . However, as K tends to infinity both
properties are simultaneously satisfied. When one’s forecast application relies solely on
the ensemble mean, using Eq. (13) to define the new kernel is probably the best option.
In contrast, when one’s forecast application relies on a forecast probabilistic distribution,
using Eq. (9a) to define the new kernel is probably the best option. The random-
number generator experiment (not shown) demonstrates that when K > 10 one of the
two properties can be satisfied precisely, and the other can be satisfied approximately
by the new dressing kernel either defined by Eq. (9a) or Eq. (13). The best-member
dressing kernel, however, does not satisfy either second moment property. Since in the
ETKF ensemble experiments (described in section 4) K = 16, the results obtained with
Eq. (9a) are very similar to those obtained with Eq. (13).

4. TEST WITH A NONLINEAR CCM3 ETKF ENSEMBLE

The best-member dressing method was first designed and tested by RS03 with
the nonlinear ensemble prediction system of the European Centre for Medium Range
Weather Forecasts. The error statistics of nonlinear systems on a given day are usually
non-Gaussian. In the random-number generator experiment of section 2 and 3 we
assume a Gaussian error system. To check the performance of the best-member dressing
and the new dressing methods in the nonlinear system with non-Gaussian error statistics,
we apply both dressing methods to the 1- to 10-day CCM3 ETKF nonlinear atmospheric
ensemble forecasts (Bishop et al. 2001; Wang and Bishop 2003; Wang et al. 2004).
We also use this section to illustrate the sensitivity of best-member dressing to the
manner in which one defines the ‘best ensemble member’.

(a) Numerical experiment design

(i) Dynamic ensemble, verification data, and variables of interest. The ensemble to
be dressed is a 16-member spherical simplex ETKF ensemble throughout 1- to 10-
day forecasts. The ensemble is run on the NCAR CCM3 (Jeffery et al. 1996) and
the initial conditions for each control forecast are obtained from the National Centers
for Environmental Prediction (NCEP)/NCAR re-analysis (Kalnay et al. 1996). The
observational network in the current experiment simulates both rawinsonde and satellite
observations. For details on the construction of the spherical simplex ETKF ensemble,
please refer to previous experiments in Wang and Bishop (2003) and Wang et al. (2004).

The verifications are NCEP/NCAR re-analysis data located on the re-analysis grids
that are nearest to known rawinsonde sites. The variable we are interested in dressing is
U500 over 14 re-analysis grids over the eastern USA (Fig. 3) at individual forecast lead
times. The CCM3 ensemble outputs are interpolated to these grids during the training
and validating phases of the experiment.

(ii) Identification of the best member. In RS03 the normalized distance between the
ith ensemble member xi and the verification y in the space of d variables is defined as:

R2
i,d =

d∑
k=1

(xi,k − yk)
2

�2
k

, (14)
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Figure 3. Locations of the 14 verification sites over the eastern USA used for the experiment in section 4.

where �2
k is the variance of xi,k, the kth component of xi , and yk is the kth component

of y. In RS03, the best member is defined as that closest to the verification in the full
space, i.e. the space of d variables includes all spatial locations, all quantities and all
forecast lead times. However, using the full space to make the identification is time
consuming. RS03 tried to empirically determine the minimum number of variables that
are unlikely to lead to misidentification. They suggested that, if practically feasible,
high-dimensional space should be used even if the variables that we are interested in
dressing are only in a small subspace. To test whether the best-member error statistics
with the best member identified in a high-dimensional space can provide reliable spread,
we use a quite high-dimensional space U500 over global verification sites throughout
1- to 10-day forecast lead times to identify the best member, although we are only
interested in U500 over the 14 sites for each individual lead time. This subspace for
identifying the best member is denoted as RS-10d-globe.

To reveal that the spread of the best-member dressed ensemble may not be reliable
due to the uncertainty in selecting the subspace to identify the best member, we also try
experiments where the best member is defined in two relatively low-dimensional spaces.
One is U500 over the 14 eastern USA sites for each individual verification lead time,
denoted as RS-id-east; the other is U500 over the 14 sites from day 1 till the verification
lead time, denoted as RS-1-id-east.

(iii) Training and forecasting processes. The training statistics for bias and dressing
perturbations are obtained from forecasts during the summer (June, July and August) of
1999. The U500 bias is obtained for each verification site for each forecast lead time by
averaging the corresponding ensemble mean errors collected from 16-member ETKF
runs during the 1999 summer. Before generating training statistics for the dressing
perturbations for both the new kernel and the best-member method, the bias is first
removed from each member of the 16-member ETKF ensemble for each verification
site and at lead times of 1, 2, . . . , 10-days.
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Since we are interested in U500 forecasts over the 14 verification sites at individual
lead times, the new dressing kernel is constructed for each forecast lead time indepen-
dently. In Eq. (9), vector xsl contains 14 elements corresponding to the 500 hPa ensemble
mean U500 forecasts at the 14 sites of the lth case during 1999 summer for each particu-
lar lead time. Vector yl contains the corresponding verifications and �s

2

l is the 14 × 14
ensemble covariance matrix. The resultant Q matrix is 14 × 14.

For the best-member method, the best member out of each 16-member ETKF run
during the 1999 summer is selected first for the three subspaces. For the subspaces
RS-id-east and RS-1-id-east, the best-member errors corresponding to U500 over the 14
verification sites are stored in a vector of 14 elements for each lead time. The archive of
the best-member errors is built by archiving these vectors for each lead time over all runs
of the 1999 summer. For the subspace RS-10d-globe, the index of the ensemble member
that is the best member identified in the subspace of RS-10d-globe is the same for all
lead times. In this case, the best-member errors are stored in a vector of 140 elements
for each 1- to 10-day run. The first 14 elements store the errors of the best member over
the 14 sites for a 1-day lead time, and the second 14 elements store the errors of the
same member for 2-day lead time, and so on. The archive of the best-member errors for
RS-10d-globe is then built by collecting such vectors from all 10-day forecasts over the
1999 summer.

To perform an out-of-sample test of the dressing techniques, forecasts were made
for the 2001 northern hemisphere summer. For each 16-member ETKF run during 2001
summer, the training bias is first removed from each ensemble member. Independently
sampled dressing perturbations are then added to each of the 16 members. For the new
dressing kernel, 14-dimensional vectors are randomly generated using Eqs. (10)–(12)
for each forecast lead time, and added to each member of the 16-member U500 forecasts
over the 14 sites. For RS-id-east and RS-1-id-east methods, random 14-dimensional
vectors are randomly drawn from the corresponding archives for each forecast lead time.
For the RS-10d-globe method, random vectors of length 140 are randomly drawn from
the corresponding best-member error archive. As mentioned above, the 140 elements
contain ten sets of 14-dimensional vectors corresponding to lead times of 1 to 10 days.
The first set of 14 elements is added to the ensemble forecast over the 14 verification
sites for the 1-day lead time, the second set is added to the same ensemble forecast for
the 2-day lead time, and so on.

(b) Experiment results
The performances of the dressed ensembles are measured by the rank histogram and

probability scores. For each forecast lead time, samples are collected from all ensemble
forecasts during the 2001 summer over the 14 verification sites. For the best-member
method, if the dressing perturbations are drawn from the best-member error archive,
the number of dressing perturbations to be added to each ETKF ensemble member is
limited by the length of the time period during which the best-member error is collected.
As we built the archive from one season’s forecasts, the number of best-member dressing
perturbations is limited by O(10) in order to make the dressing perturbations for each
of the 16 ETKF ensemble members diverse enough. On the other hand, we want the
number of dressing perturbations to be large enough so that the probability distribution
derived from the dressed ensemble will be smooth, and also so that the ensemble mean
whose seasonal average bias is removed will not be shifted due to the sampling error
of the dressing perturbations. In our experiment we tried to dress each member of the
16-member ETKF ensemble with 2, 8, 16, and 32 perturbations. We found that the re-
sults start to converge when the number of dressing perturbations approaches 16 and 32.
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The latter renders the sampling error of the dressing perturbation mean to be less
than 5%. In the results shown in this section, each member of the 16-member ETKF
ensemble has been dressed with 32 perturbations, thus yielding 512-member dressed
ensembles. For the best-member method, the 32 perturbations are drawn from the best-
member error archive. For the new dressing kernel, the 32 perturbations are drawn from
multi-dimensional Gaussian distribution following Eqs. (10)–(12).

The first measurement of the reliability of the ensembles is applicable to scalar
verifications and is called the rank histogram (Anderson 1996; Hamill 2001). Recall that
the sizes of the undressed and the dressed ensembles are 16 and 512, respectively.
Because the number of verifications to construct the rank histogram is limited relative
to the rank of 512, and also because we want the y-axis of the histogram to have
the same scale for the dressed and undressed ensembles, instead of constructing the
histogram for the dressed ensemble by using all 512 dressed members we randomly
choose 16 out of 512 members for each sample. Figure 4(a) is the result for the undressed
16-member ensemble for the 2001 summer after removing the bias from the 1999
summer (only results for days 1, 3, 5, 7, and 9 are shown in Fig. 4). The undressed
ensemble is under-dispersive, especially for longer forecast lead times. The χ2 test for
the uniformity of the rank histogram (Wilks 1995; Anderson 1996; Hamill 2001) rejects
the null hypothesis that the rank histogram is flat with a confidence level much higher
than 99% (the P value is equal to 7.1 × 10−4 for day 1 and much smaller than 10−10

for 2- to 10-day lead times). After dressing with the new kernel, shown in Fig. 4(b), the
rank histogram becomes much flatter throughout 1- to 10-day forecast lead times, which
indicates a more reliable ensemble spread. The χ2 test cannot reject the null hypothesis
that the rank histogram is flat even with confidence as low as 88% (the P values greater
than 0.12). For the RS-10d-globe dressed ensemble in Fig. 4(c), the rank histogram is
over-dispersive through the 1- to 10-day forecast lead times. The χ2 test confirms this
impression of non-uniformity. The P value is nearly zero (much smaller than 10−10) for
all lead times, indicating the null hypothesis of uniform rank histogram can be rejected
with a high confidence level (much higher than 99%). For the RS03 method, where
the best member is identified by RS-1-id-east shown in Fig. 4(d), the histogram is over-
dispersive for lead times of 1 to 7 days and the χ2 test rejects the null hypothesis that the
rank histogram is flat with confidence level much higher than 99% (the P value is much
smaller than 0.0001). Figure 4(e) is the result corresponding to RS-id-east. The rank
histogram is over-dispersive for lead times of 1 to 2 days and under-dispersive for lead
times of 8 to 10 days. The χ2 test confirms the non-uniformity for these five lead times
by rejecting the hypothesis of uniformity of rank with a confidence level much higher
than 99% (the P value is much smaller than 0.01).

In Fig. 5 we show the Brier score (BS, Brier 1950; Murphy 1973; Wilks 1995)
measurement results. Four climatologically equally likely bins are defined by using
summer 1999 U500 verifications over the 14 verification sites. For each lead time, a
probabilistic forecast is made for each of the four bins by the relative frequency of
ensemble members falling in each bin. The BS is then calculated (see details in Murphy
1973) using the four bins for each of the 14 sites for each of 92 forecasts of summer
2001 and then averaged over all 14 sites throughout all of the season’s forecasts. The
number of samples of BS used for averaging for each lead time is thus 14 × 92 = 1288.
The BS corresponding to using the sample climatology, i.e. the uncertainty term when
decomposing the BS, is also shown in Fig. 5. To estimate the significance of the
differences between curves, a bootstrap resampling technique (Efron and Tibshirani
1986; Wilks 1995; Hamill 1999; Mullen and Buizza 2001; RS03) is used to estimate
the ±σbounds (i.e. standard error) for each curve. Note that in bootstrap resampling



IMPROVEMENT OF ENSEMBLE RELIABILITY 977

Figure 4. Rank histograms for: (a) undressed, (b) new kernel dressed, (c) RS-10d-globe dressed, (d) RS-1-id-
east dressed and (e) RS-id-east dressed CCM3 ETKF 500 hPa zonal wind ensembles over 14 verification sites for

lead times of 1, 3, 5, 7 and 9 days. See text for details.
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Figure 5. Brier scores (BS) for the undressed, new kernel dressed, RS-10d-globe dressed, RS-1-id-east dressed
and RS-id-east dressed CCM3 ETKF 500 hPa zonal wind ensembles from 1- to 10-day lead times. The BS from
the sample climatology is also shown. The vertical solid and dashed lines are the standard errors of BS calculations
with given samples for the new kernel dressed and undressed ensembles, respectively. See text for further details.

the samples are required to be independent. Since the 1288 BS samples could be
spatially and temporally correlated, before resampling we first estimate the number of
independent samples within the 1288 BS samples. Following RS03, we divide the total
1288 samples into independent blocks and take the BSs averaged over each block as
actual independent samples. We first divide the 14 sites into groups to ensure that the
BS time series averaged over each group are uncorrelated among different groups. We
end up having three independent groups. Then for each group we work out the length
of the temporal block in such a way as to ensure that the autocorrelation of the BS time
series given by averaging the BSs over each temporal block is nearly zero. After we
obtain the independent samples, 100 bootstrap samples are generated by resampling the
independent samples with replacement as recommended by Efron and Tibshirani (1986).
These 100 bootstrap samples were used to estimate the ±σbounds, i.e. the standard error
of each curve in Fig. 5.

In Fig. 5, ±σ bounds for the curves of the undressed ensemble and the new
dressing kernel are shown. From Fig. 5, the dressed ensemble with new kernel is seen
to perform better than the undressed ensemble for 1- to 10-day forecast lead times.
The improvements for 4- to 10-day forecasts are statistically significant. It is also better
than the best-member dressed ensemble RS-10d-globe for 1- to 10-day lead times with
significance for lead times of 1 to 2 days. Decomposition of the BS (Murphy 1973)
shows that the improvement of the new method relative to the best-member method
is due to the improvement in the reliability component of the BS. The RS-10d-globe
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ensemble is worse than the undressed ensemble for lead times of 1 to 2 days. The RS-
10d-globe ensemble is significantly better than the undressed ensemble for lead times
of 5 to 10 days. The scores for the best-member dressed ensembles, RS-id-east and
RS-1-id-east, are statistically indistinguishable from the new kernel dressed ensemble.
Note that RS-10d-globe has worse BSs than both RS-id-east and RS-1-id-east, which
is inconsistent with the argument from RS03 that full space or high-dimensional space
should be used to identify the best member. To explain why the RS-10d-globe ensemble
is worse than the RS-id-east and RS-1-id-east ensembles, we first notice that the error
variance of the best member defined in RS-10d-globe is only 10% smaller than the
worst member. In other words, all members can be regarded as ‘the worst’ or ‘the best’
if identified in such high-dimensional space.

We also tried (not shown) using the continuous ranked probability score (CRPS,
Hersbach 2000) and the ignorance score (IGN, Roulston and Smith 2002). The com-
parison results from the CRPS and the IGN are qualitatively the same as that from the
BS. Note that in computing these probability scores the ensemble size for the dressed
ensemble is 512, which is much larger than the undressed-ensemble size of 16. Thus the
improvement of the dressed-ensemble scores relative to the undressed-ensemble scores
may partly come from the increase of the ensemble size (Richardson 2001; RS03). This
is confirmed when we randomly select 16 out of 512 members to calculate the BS for
the dressed ensemble. The results (not shown) show that the improvement of the dressed
ensemble relative to the undressed ensemble is smaller than that shown in Fig. 5. The
relative performance of the new dressing method versus the best-member method is
similar to Fig. 5.

In summary: tests with the CCM3 ETKF ensembles for 500 hPa zonal wind, U500,
and other variables at other levels (not shown) show that the performance of the best-
member dressed ensemble is highly dependent on the choice of subspace used to define
the best member, and that the new dressing kernel can provide a more reliable estimate
of the variance of the forecast errors than the best-member dressed ensembles.

5. APPLICATION TO COOLING DEGREE-DAYS FORECASTS FOR BOSTON: A TEST ON
FORECAST ERROR COVARIANCE ESTIMATES

The rank histogram and BS tests in section 4 only measure the skill of forecasts
of individual variables. User specific weather application functions usually depend
nonlinearly on more than one weather variable (Palmer 2002). Distributions of such
weather application functions are not only sensitive to the forecast error for an individual
variable but also sensitive to the covariance of the forecast errors among these variables.
As the new kernel augments underdispersive ensembles by way of providing reliable
estimates for both the error variance and the error covariance among weather variables
of interest, the new kernel is expected to provide reliable ensemble forecasts for such
weather application functions. In this section, we demonstrate this property of the new
dressing kernel by applying it to the problem of forecasting the accumulative CDDs, a
weather index frequently used by users of weather derivatives. Another purpose of this
section is to show how ensemble forecasts can be fed into a quantitative user application
model, and how the resulting output can be used to form probabilistic forecasts of the
economic variable relevant to the user (Palmer 2002).

(a) Cooling degree days definition
To manage the risks associated with abnormally warm or cool summers,

a frequently used weather index is accumulated CDDs (for more information see
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http://www.cme.com/prd/wec/abtwthder2766.html of the Chicago Mercantile Exchange).
The CDD is defined as:

CDD =
Nd∑
i=1

max(0, Ti − 65 ◦F), (15)

where Nd is the number of days over which the CDD is accumulated (i.e. the contract
period) and Ti is the arithmetic average of the daily maximum and minimum 2 m
temperatures in degrees Fahrenheit on the ith day of the period (following Zeng (2000)).
Note that knowing the distribution of temperature forecast errors on each of the Nd days
defining the CDD is not sufficient to determine the probability density function (pdf)
of CDDs; one must also know how the temperature errors are correlated through time,
because if a temperature error in the day 2 forecast is positively correlated to temperature
errors in the day 1 and day 3 forecasts then the distribution of CDDs will be broader than
it would be if there were no such correlation.

(b) Application of dressing
In the following experiment, we only consider samples over a single site, Boston,

for one season. In order to increase the number of independent samples, we consider
CDDs accumulated over only 3 days. (The Chicago Mercantile Exchange’s CDD
contracts pertain to CDDs accumulated over a month or a season.). There are two ways
to augment the CDD ensemble derived from the 16-member CCM3 ETKF ensemble
forecasts for daily 2 m temperature: one is to dress CDD ensemble forecasts directly;
the other is to dress Ti and substitute the dressed Ti in Eq. (15). However, if we were
to dress CDDs directly we would have to modify our dressing algorithm to account
for the fact that CDDs are positive definite. Because of this, and because we want to
demonstrate how the new dressing technique can account for correlations of temperature
errors through time, we choose to dress Ti . Also, notice that once Ti is dressed it can
be applied to other user application functions as well. Specifically, to obtain a dressed-
ensemble forecast of the 3-day CDDs, we first dress 1- to 3-day Ti output from the
CCM3 ETKF ensemble and then substitute each of the dressed 1- to 3-day Ti forecasts
for Boston into Eq. (15).

The CCM3 ETKF Ti outputs are interpolated to the single verification site
at Boston. The verifications for CDD and Ti for the summers of 1999 and 2001
are obtained from the Chicago Mercantile Exchange at http://www.cme.com/dta/hist.
The training and dressing procedures are similar to those described in subsection 4(a)
except: (i) the bias for Ti is computed from the previous 2-weeks’ forecasts; (ii) to ac-
count for the correlation of errors, the second moment constraint dressing kernel is built
by simply placing 1-to-3-day Ti forecasts for Boston and the corresponding verifications
in sample vectors with sizes of three elements when constructing the terms in Eq. (9);
(iii) the subspace to identify the best member is over Boston from 1- to 3-day lead times
and thus the best-member error samples for Ti , i = 1, 2, 3 is stored in three-element
vectors for archiving the best-member errors; and (iv) the best-member dressing pertur-
bations are drawn from a zero-mean multi-dimensional (three-dimensional in this case)
normal distribution whose covariance is consistent with the covariance of the archived
best-member errors. With (iv), the number of best-member dressing perturbations drawn
is not limited by the length of the time period during which the best-member error
archive is built.



IMPROVEMENT OF ENSEMBLE RELIABILITY 981

Figure 6. Rank histograms for undressed, new kernel dressed, and the best-member dressed 3-day accumulated
cooling degree-day ensembles over Boston during summer 2001.

(c) Results on the reliability of the dressed CDD ensemble spread
Figure 6 shows the reliability of the spread of the accumulated CDD ensembles

measured by the rank histograms. The figure shows that the undressed CDD ensem-
ble underpredicts the CDD forecast uncertainty. After dressing with the best-member
method, it is still underdispersive. In comparison, the new dressing kernel can pro-
vide reliable spread for the 3-day accumulated CDD forecasts. Note that the number
of realizations of verifications for one season’s forecasts over a single site is limited for
constructing the rank histogram if all ensemble members are used as ranks. To overcome
this problem, as in subsection 4(b), we randomly choose a relatively small number of
ensemble members out of all the total ensemble members to define the ranks for the
rank histogram. The result shown in Fig. 6 corresponds to the case where we randomly
choose three members out of all 4096 dressed-ensemble members to build four ranks for
each ensemble forecast. Also note, for situations where the verification exactly equals
some of the ensemble members, such as CDD forecasts of zero and a verification of
zero, the number of members (m) equal to the verification is first counted. Then we
assign uniform random numbers between 0 and 1 to the m members and the verifica-
tion. The m members are ordered according to the assigned random numbers. The rank
of the verification is then determined by the rank of the random number assigned to
the verification among the m random numbers assigned to the m tied ensemble mem-
bers. This is similar to the method for constructing rank histograms for precipitation
discussed in Hamill and Colucci (1997). The χ2 test for the uniformity of the rank
histogram confirms the flatness of the rank histogram of the new kernel dressed CDD
ensembles (P value as large as 0.74) and the non-flatness of those of the undressed
(P value as small as 0.0001) and the best-member dressed CDD ensembles (P value as
small as 0.02). The underdispersion of the best-member dressed ensemble indicates that
the best-member dressing kernel is failing to provide reliable error variance estimates
for individual Ti and/or it cannot reliably represent the temporal correlation of forecast
errors. We also measure the skills of the CDD ensembles with the IGN. Four clima-
tologically equally likely categories are built from 2001 summer CDD verifications on
Boston. The results of the IGN scores for the CDD ensembles are shown in Fig. 7.
The smaller the score, the less ignorant of the CDD probabilistic forecast. The statistical
t-test (Ott 1993) shows that the IGN for the new kernel CDD ensemble is significantly
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Figure 7. Ignorance scores for the undressed (UNDR), best-member dressed (BEST) and new kernel (WB)
dressed cooling degree-day ensembles.

better than those of the best-member CDD ensemble and the undressed CDD ensem-
ble. Therefore, the probabilistic CDD forecast generated from the CDD ensemble aug-
mented by the new dressing kernel is more skilful than the undressed CDD ensemble and
the best-member dressed CDD ensemble. The BS measurement (not shown) provides
qualitatively the same result. The reliability diagram of the ensemble covariance among
the 14 selected sites for U500 (not shown) also indicate that the new kernel can provide
more reliable forecast error covariance estimates than the best-member method.

6. CONCLUSION

A new multi-variate dressing method for the purpose of augmenting the spread
of underdispersive ensembles has been designed and tested. The method makes distri-
butions from which dressed-ensemble members are drawn indistinguishable from the
distribution from which verifying observations are drawn under a seasonally averaged
second moment measure. Ensemble bias is first removed, before building training statis-
tics for the dressing kernel and before dressing the current ensembles. The CCM3 ETKF
ensemble dressed with the second moment constraint method is more skilful than the
corresponding undressed ETKF ensemble. With both a random-number generator ex-
periment and the CCM3 ETKF ensemble framework, the RS03 original best-member
dressing method was compared with the second moment constraint dressing method.
It was found that the spread of the best-member dressed ensemble can still be under-
dispersive, or even become overdispersive, depending on such factors as the undressed-
ensemble size, how underdispersive the undressed ensemble is and the subspace from
which the best member is identified. In contrast, the underdispersive ensembles after
they are dressed with the second moment constraint dressing kernel always gave about
the right amount of dispersion.

The utility of the second moment constraint dressing relative to the best-member
dressing, and the importance of accurately accounting for the temporal correlation of
forecast errors, was demonstrated by comparing predictions of accumulative cooling
degree-days (CDD) from the ETKF ensemble. It was found that the new second moment
constraint dressing kernel provided a 3-day accumulated CDD ensemble with more
reliable spread and better skill than the CDD ensemble augmented with the best-member
dressing kernel.
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In sections 3 and 4 of this paper, the dressing perturbations for the new kernel
were drawn from a multivariate normal distribution. As in the best-member method, the
dressing perturbations for the new kernel can also be based on an archive of past errors
rather than a prescribed distribution. This is achieved by first grouping the historical
errors of all ensemble members, and then transforming these errors by pre-multiplying
a matrix so as to make the covariance of the transformed errors to be equal to the Q
matrix in Eqs. (10)–(12). In our experiment, dressing with the archive and the prescribed
distribution produce similar results for U500 and 2 m temperature. So we only show the
results corresponding to the prescribed distribution. Also note that the assumption of
a Gaussian dressing kernel is likely to be poor for positive-definite quantities, such as
precipitation and 10 m wind speed. To extend the usage of the new dressing kernel for
such quantities, a possible option is to transform them in such a way as to make the
transformed quantities have more Gaussian type of distributions (Wilks 2002).

In the new dressing method, no dressing is performed for directions where the
undressed ensemble is already overdispersive (Eqs. (10)–(12)). In other words, the new
method is designed to improve the reliability of underdispersive ensembles, which is one
of the common problems in current operational ensembles. Although underdispersion
is the most common deficiency of raw ensembles, overdispersion is possible, and
any complete ensemble post-processing scheme ought to account for this possibility.
To correct overdispersive ensembles, we could try to dress each ensemble member
differently. A possible solution would be to dress the central members with more
dressing perturbations than the outside members so that the pdf of the dressed ensemble
is narrower than the undressed ensemble. We will explore this in future work.

The new dressing kernel, like the best-member kernel, is appropriate for ensembles
with each member having similar error statistics. Work is underway to extend the second
moment constrained method, discussed here, to the multi-model ensemble case in which
differing ensemble members have differing error statistics.

Given large enough datasets, it would be of interest to condition the dressing kernel
on flow regimes known to have profound impacts on model error. For example, different
dressing kernels might be used on convectively stable and unstable days, and they may
also be constructed to be regionally dependent.
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APPENDIX

(a) Derivation of Eq. (6)
To derive Eq. (6) first note that using Eq. (4):

(ψli − ψlj )= (xl + x′
li + εli − xl − x′

lj − εlj )

= ((x′
li − x′

lj )+ (εli − εlj )).
(A.1)
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Using (A.1) on the left-hand side of Eq. (5) gives:

〈〈(ψli − ψlj )(ψli − ψlj )
T〉i �=j 〉l

= 〈〈((x′
li − x′

lj )+ (εli − εlj ))((x′
li − x′

lj )+ (εli − εlj ))
T〉i �=j 〉l

= 〈〈(x′
li − x′

lj )(x
′
li − x′

lj )
T〉i �=j 〉l + 〈〈(εli − εlj )(εli − εlj )

T〉i �=j 〉l
= 2〈�2

l 〉l + 2〈εεT〉.

(A.2)

Note that the covariance of the dressing perturbations 〈εεT〉 is the same for all ensemble
members for all cases; so we put no subscript on this term. Also note that from Eq. (4):

(ψli − yl)= (xl + x′
li + εli − yl). (A.3)

Hence the right-hand side of Eq. (5) is:

〈〈(ψli − yl)(ψli − yl)
T〉i〉l = 〈〈(xl + x′

li + εli − yl)(xl + x′
li + εli − yl)

T〉i〉l
= 〈〈((x′

li + εli )− (yl − xl))((x′
li + εli )− (yl − xl))T〉i〉l

= 〈�2
l 〉l + 〈εεT〉 + 〈(yl − xl)(yl − xl)T〉l . (A.4)

Substituting Eqs. (A.1)–(A.4) into Eq. (5) gives Eq. (6).

(b) Derivation of Eq. (9a)
To derive Eq. (9a), we start with the first term on the right-hand side of Eq. (6). First

note that:

〈(xsl − yl)(x
s
l − yl)

T〉l = 〈((xsl − xl)+ (xl − yl))((x
s
l − xl)+ (xl − yl))

T〉l
= 〈(xsl − xl)(xsl − xl)T〉l + 〈(xl − yl)(xl − yl)

T〉l .
(A.5)

Note in deriving the last step in Eq. (A.5), we use the assumption 〈(xsl − xl)(yl − xl)T〉l
= 0, which means the difference between the sample ensemble mean and the underlying
ensemble mean does not co-vary with the difference between the verifications (e.g.
observations) and the underlying ensemble mean over seasonal forecasts. Also recall
that 〈(xsl − xl)(xsl − xl)T〉 =�2

l /K . Then from Eq. (A.5), the first term on the right-
hand side of Eq. (6) can be approximated as:

〈(xl − yl)(xl − yl)
T〉l = 〈(xsl − yl)(x

s
l − yl)

T〉l − 1

K
〈�2

l 〉l . (A.6)

If we approximate �2
l in the last term of Eq. (A.6) and the second term on the

right-hand side of Eq. (6) with �s
2

l , then we get Eq. (9a).
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